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Problem Tutorial: “Homework’

Denote the number of characters in A as n. If some character occurs more than 7 times, then the answer
is “IMPOSSIBLE”, because, in this case, the sets of positions of this character in the first string and in the
second string will necessarily intersect.

Otherwise, the answer exists. There are many different constructions; we’ll describe the simplest known
to us. You can choose any B, but it’s the most convenient to take the sorted version of A. This implies
that the set of occurrences of every character is a contiguous segment. After that, take C to be equal to B
cyclically shifted by 5. This way, the segment for every character also shifts by 5, but, since the number
of occurrences of every character is at most &, these segments in B and C' don’t intersect.

Here is an implementation of this solution in Python:

A = input()

n = len(A)

B = sorted(A) # Sort A

C = B[n//2:]1 + B[:n//2] # Set C to be a cyclic shift of B by n // 2

if any(B[i] == C[i] for i in range(n)): # Check if the answer is correct
print ("IMPOSSIBLE") # If no, print IMPOSSIBLE

else:

print("".join(B)) # If yes, print B and C
print("".join(C))

Problem Tutorial: “Matryoshka Inc”

Let’s reformulate the problem: we are given an array of numbers (possibly with leading zeroes), and we
can arbitrarily permute digits in each number. The task is to maximize the length of the longest increasing
subsequence (LIS).

Finding LIS is a well-known problem solved by dynamic programming. Still, the classic solution doesn’t
work here: we can’t only store dp[i] because we’re also interested in the actual value of the last element
in the subsequence. However, if we include the value in the DP state, we can pass some subgroups.

The solution here also uses dynamic programming, but differently: let’s iterate over all integers from left
to right (let the current index be 7). We’ll also maintain array dp[j] — the minimum last integer in the
increasing subsequence of length j. This is enough to make the transition to the next integer.

How do we process another integer from the array? Let’s try all possible j, the length of the increasing
subsequence that we would like to append our new element. Now we need to permute digits in the ¢+ 1-th
integer so that we have an integer larger than dp[j] and the minimal possible among those. This is also
a pretty standard problem: we try to match the longest possible prefix, and, on the next position, we put
a digit that’s larger (but still as small as possible). Minimally fill the rest. We’ll call this function for all
j-

The time complexity is O(n?B), where B is the maximum decimal length of input integers.

Problem Tutorial: “Password Lock”

Let’s look at their remainders instead of numbers on the cells when divided by k. We can almost always
put numbers with the same remainder side by side, except for the cases of remainder 0 and % (if k is
even).

Let’s first try to put all the cells in ascending order of the remainder. Then we can have three places that
do not fit the condition:

1. two remainders 0 side by side;

2. two remainders % side by side (this can happen only if k is even);
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3. two remainders x and k — x side by side, = & — z (this can be at most in one place).

Let’s temporarily remove all cells with a remainder of 0 and % To get rid of the third case, you need to
insert any other remainder between these elements. You can take either 0 (if it exists), or & (if it exists),
or a cell from the beginning (if there is another remainder), or a cell from the end (if there is another
remainder). We take precisely from the beginning or the end so as not to spoil anything and not to add
a third case in other places. It is clear that if we have only two different remainders, a suitable sequence

does not exist.

Now let’s try to insert back cells with remainders 0 and % Let there be fewer zeros (in the case of a

k
29

Since there are more of them, there will be no adjacent zeros. If g is too much, and we can’t insert
everything, then this means that there are more than half of all cells; then a suitable sequence does not
exist.

minority of £, we act similarly). Then paste them all at the beginning. Then paste all % through one.

Thus you got rid of all three possible cases.

Problem Tutorial: “The Name of the Fourth Problem”

In mathematics, this sequence is known as Golomb sequence. To solve the first few subtasks, you need
to figure out how this sequence works and turn it into code (or find the explicit recurrent formula
a(n) =1+ a(n — a(a(n)))); implement prefix sums.

To solve this problem for larger n, we need to use the specific structure of this sequence. Notice that it has
a lot of repetitions that come in runs of adjacent elements. We can use Run-length encoding. Instead of
storing each number explicitly, we will work with pairs (value, count). It’s a bit harder to calculate prefix
sums on these pairs, but still not impossible: we calculate prefix sums for counts (to find the bound with
binary search) and total sums (in other words, for value times count products). This solution works for
r; < 10%0.

To receive the full 100 points, we need to make one similar step. Let’s look at segments in the previous
solution. Using the same argument, the “count”s in these segments monotonically increase and have a lot
of repeats. In fact, the sizes of segments from the previous solution are precisely the original sequence
(because it is self-describing). So let’s do the compression again, but this time, on segments. In the end,
we’ll store the sequence as blocks “numbers from a to b inclusive; each is repeated k times”. Similarly, we
can build prefix sums on these blocks and use binary search with prefix sums to answer the RSQ queries.

The time complexity consists of the precalculation (we need to calculate at most L < 10% blocks) +
O(log L) per query.

Problem Tutorial: “Comparing Theories”
First of all, we will count similar triples instead. Then, in the end, we will subtract their count from (g)

The solution that works in O(n*) or O(n3) might work as follows: try all triples of leaves, and
compute the “middle” vertex for them. It will be a parent of some two out of three leaves; check
that this pair coincides in both trees. The “middle” vertex is the one that appears exactly once in
(LCA(A, B),LCA(A,C),LCA(B,C)). Depending on the implementation of LCA, this solution’s time
complexity is between O(n*) and O(n?).

How to count these triples faster? Consider LCA of three leaves in the first tree. This vertex has two
subtrees: color one subtree in red and another in blue. Everything outside this subtree will be colorless.
Fix a vertex in the second tree; suppose it’s also a LCA of three leaves in the second tree.

How many ways are there to choose three leaves, such that their structures coincide, and their LCAs in
the first and the second tree are these two vertices?

For the LCA of three leaves, two out of three leaves must come from one subtree and one — from another.
Let R1, Ro, By, By be the number of red/blue leaves in the left /right subtree in the second tree. Then,
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the number of shared triples is (gl)Bg + (@Q)Bl + (le)Rg + (322)]%1. Summing this over all vertices of the
second tree (in linear time) gives us a O(n?) solution.

Imagine that we have a data structure that allows us to perform two types of operations:

e Change a leaf’s color.

e Calculate the formula above for all vertices and return the sum.

We'll discuss how to implement such a data structure later. First, let’s discuss how to solve the problem
in O(nlogn) queries to this structure. Run the depth-first search that colors all leaves in red and blue
for every vertex in the first tree. It will obey two conditions: before entering v, every leaf in its subtree is
red, and everything else is colorless; after exiting v, every leaf is colorless. It works as follows:

1. Recolor all leaves in the smaller subtree v into blue, query the data structure for the answer for
the current vertex.

2. Uncolor everything in the smaller subtree.
3. Run recursively for the larger subtree; its prerequisite is fulfilled.
4. After exiting the larger subtree, color all leaves in the smaller subtree v into red, and run recursively.

5. Both recursive calls cleared their respective subtree; it’s safe to exit.

Inside each DFS call, we make O(k) queries, where k is the size of the smaller subtree. It’s well known
that the sum of these is O(nlogn) queries.

The data structure in question can be implemented using Heavy-Light decomposition (logzn or
logn per query), where you need to change a leaf’s color and update the count on the path
to the root. Also, since this problem is significant in Computational Biology, plenty of papers
discuss the algorithms for triplet/quartet distance. One of the data structures, called Hierarchical
Decomposition Tree, can also answer this query in O(logn) time per query. You can read the details
at https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-52-S18.
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