
Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Information
Memory limit
The limit is 512 MiB for each problem.

Source code limit
The size of each solution source code can’t exceed 256 KiB.

Submissions limit
You can submit at most 50 solutions for each problem.

You can submit a solution to each task at most once per 30 seconds. This restriction does not apply in
the last 15 minutes of the contest round.

Scoring
Each problem consists of several subtasks. The subtask score is awarded if all tests in the subtask are
passed.

The number of points scored for the problem is the total number of points scored on each of its subtasks.
The score for the subtask is the maximum number of points earned for this subtask among all the solutions
submitted.

Feedback
To get feedback for your solution, go to “Runs” tab in PCMS2 Web Client and use “View Feedback” link.
In each problem of the contest you will see the score for each subtask, or the verdict for the first failed
test.

Scoreboard
The contestants’ scoreboard is available during the contest. Use “Monitor” link in PCMS2 Web Client to
access the scoreboard. The standings provided in PCMS2 Web Client are not final.

Page 1 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Problem A. Universal Paperclips
Time limit: 2 seconds

Universal Paperclips is an incremental game whose goal is to produce paperclips. At your disposal, you
have a device that makes paperclips at the click of a button.

For this problem, we’ll consider a simplified version of the game with two types of actions:

1. Click the button. Each click adds a certain amount to the current number of paperclips. This action
is denoted by letter “C” (“click”).

2. Upgrade the paperclip-making device. After this action, every subsequence button click will produce
one more paperclip. This action is denoted by the letter “U” (“upgrade”).

Initially, the player has zero paperclips, and each button click produces one paperclip. An upgrade costs x
paperclips. In all test cases, it’s guaranteed that before every upgrade action, the player has
at least x paperclips.

Benny is coding a bot that plays this game. He programmed a fixed sequence of n actions S, that bot
executes cyclically. Every second, the bot makes another action: on the 1st second, the bot executes action
S1, on the 2nd — S2, . . . , on the n-th second it executes Sn, on the n+1-th second — S1 again, and then
the cycle repeats.

How many paperclips will Benny have after his bot runs for t seconds?

Input
The first line contains three integers n, t and x (1 ≤ n ≤ 105; 1 ≤ t ≤ 109; 0 ≤ x < n). The second line
contains the string S of length n, consisting of characters “C” and “U”.

Output
Output a single integer — the number of paperclips after t seconds.

Scoring

Subtask Points Constraints
1 33 t ≤ 105

2 67 No additional constraints

Examples
standard input standard output

10 15 2
CCCCCUUCCU

25

3 10 0
UUU

0

9 150 1
CCUCCCCUC

2023

Note
Let’s go through the first example.

Page 2 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

The first five actions produce one paperclip each. Then, the two subsequent upgrades cost two paperclips,
so you have only one paperclip left. But, the next two clicks produce three paperclips. The next upgrade
costs two paperclips, again. Each one of the last five clicks adds four paperclips.

The final number of paperclips is 1 + 1 + 1 + 1 + 1− 2− 2 + 3 + 3− 2 + 4 + 4 + 4 + 4 + 4 = 25.

Page 3 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Problem B. Hanoi Chips
Time limit: 2 seconds

In the city of Hanoi, in addition to the famous tower of Brahma, there is also the number line of Brahma.
There are three identical chips placed in integer coordinates somewhere on this line. You can move these
chips according to the following rule: take any chip (one at a time) and place it in the new position,
which must be symmetrical relative to one of the two other chips. For example, if chips’ coordinates are
1, 4, and 6, you can move the chip from 4 to either −2 (symmetrically relative to the first chip) or to 8
(symmetrically relative to the third chip). Multiple chips can occupy the same spot.

According to one of the legends, treasures will rain from the sky as soon as chips occupy certain positions
on that line. Of course, nobody knows the exact coordinates where the chips should be, but you have a
guess.

Given the starting and final arrangement of the chips, determine if the final arrangement is reachable,
and, if possible, find a sequence of moves. The number of moves might not be optimal, but should not
exceed 105. You cannot move a chip into a coordinate greater than 109 by absolute value.

Input
The first line of the input contains three integers x1, x2, x3 (−104 ≤ xi ≤ 104) — the starting arrangement
of the three chips.

The second line of the input contains three integers y1, y2, y3 (−104 ≤ yi ≤ 104) — the final arrangement.

Output
If it’s impossible to achieve the final arrangement, output a single integer “-1” (without quotes).

Otherwise, output a single integer k (0 ≤ k ≤ 105) — the number of moves. Then, print all moves (each
one in a separate line) in the following format: the first number is the coordinate of the chip being moved,
and the second is its new position. All coordinates should not exceed 109 by absolute value.

Scoring

Subtask Points Constraints

1 17
Both in the starting and final arrangement,
three chips occupy three consecutive spots

(for example, 3, 4, 5 or −7,−9,−8)
2 20 0 ≤ xi, yi ≤ 50

3 25 The final arrangement is reachable by at most ≤ 8 moves
4 38 No additional constraints

Page 4 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Examples
standard input standard output

1 2 4
3 4 6

2
1 3
2 6

1 2 2
1 2 3

-1

1 4 5
-3 -2 -1

4
4 -2
5 -3
-3 -1
1 -3

Note
Please note that since the chips are identical, the chips do not have to finish at the corresponding
coordinates in the end. For example, x1 can go to y2, x2 to y3 and x3 to y1.

In the first example, you need to move chips from the coordinates (1, 2, 4) to the coordinates (3, 4, 6). To
achieve this, you can make two moves: move the chip from 1 to 3 and then another chip from 2 to 6.

Page 5 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Problem C. Sorting Subarrays
Time limit: 2 seconds

You are given an array of integers. You perform the following action exactly once: choose a non-empty
subsegment of the array and order its elements in non-decreasing order.

How many different arrays can you obtain? A subsegment of an array is a collection of several consecutive
elements.

Input
The first line contains a single integer n — the size of the array (1 ≤ n ≤ 200 000).

The second line contains n integers a1, a2, . . . an — the contents of the array (1 ≤ ai ≤ 109).

Output
Output a single integer — the number of different arrays you can obtain by sorting a subsegment once.

Scoring

Subtask Points Constraints
1 13 n ≤ 50

2 26 n ≤ 3 000

3 22 1 ≤ ai ≤ 2

4 39 No additional constraints

Examples
standard input standard output

7
3 1 4 1 5 9 2

8

4
1 2 3 4

1

Note
Listed below are all eight achievable arrays in the first example. Square brackets indicate the sorted
subsegment.

1. [3], 1, 4, 1, 5, 9, 2→ 3, 1, 4, 1, 5, 9, 2

2. [3, 1], 4, 1, 5, 9, 2→ 1, 3, 4, 1, 5, 9, 2

3. [3, 1, 4, 1], 5, 9, 2→ 1, 1, 3, 4, 5, 9, 2

4. [3, 1, 4, 1, 5, 9, 2]→ 1, 1, 2, 3, 4, 5, 9

5. 3, [1, 4, 1], 5, 9, 2→ 3, 1, 1, 4, 5, 9, 2

6. 3, [1, 4, 1, 5, 9, 2]→ 3, 1, 1, 2, 4, 5, 9

7. 3, 1, 4, [1, 5, 9, 2]→ 3, 1, 4, 1, 2, 5, 9

8. 3, 1, 4, 1, 5, [9, 2]→ 3, 1, 4, 1, 5, 2, 9

Page 6 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Problem D. RestORe
Time limit: 2 seconds

Consider a sequence of non-negative integers from L to R inclusive. Split this sequence into n non-empty
segments and calculate the bitwise “OR” of all numbers in each segment. Denote the result for the i-th
segment as fi.

You need to solve the inverse problem: given f1, f2, . . . , fn, find the number of ways first to select L and
R, and then split all numbers from L to R into n non-empty segments, such that the results of calculating
the bitwise “OR” in each segment are equal to f1, f2, . . . , fn respectively.

The bitwise “OR” of two non-negative integers is calculated as follows: Write down both arguments in
binary, then the i-th bit of the result equals 1 iff at least one argument has 1 at that place. For example,
(17 | 13) = (100012 | 011012) = 111012 = 29.

Input
The first line contains integer n (1 ≤ n ≤ 200 000). The second line contains n integers fi (0 ≤ fi < 260).

Output
Output a single integer — the number of ways to choose a sequence of consecutive integers and then split
it into n segments. Because the answer can be huge, print it modulo 1 000 000 007.

Scoring

Subtask Points Constraints
1 16 n = 1

2 12 n ≤ 16, 0 ≤ fi < 16

3 13 n ≤ 256, 0 ≤ fi < 256

4 18 n ≤ 1024, 0 ≤ fi < 1024

5 24 n ≤ 30 000, 0 ≤ fi < 230

6 17 No additional constraints

Examples
standard input standard output

3
0 7 7

4

1
11

6

2
4 6

0

Note
In the first example, there are four ways to split a sequence of consecutive integers into three parts such
that their bitwise “OR”s are 0, 7 and 7:

• [0], [1, 2, 3, 4, 5, 6], [7]: 0 = 0; 1 | 2 | 3 | 4 | 5 | 6 = 7; 7 = 7

• [0], [1, 2, 3, 4, 5], [6, 7]: 0 = 0; 1 | 2 | 3 | 4 | 5 = 7; 6 | 7 = 7

• [0], [1, 2, 3, 4], [5, 6, 7]: 0 = 0; 1 | 2 | 3 | 4 = 7; 5 | 6 | 7 = 7

• [0], [1, 2, 3, 4], [5, 6]: 0 = 0; 1 | 2 | 3 | 4 = 7; 5 | 6 = 7

Page 7 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

Problem E. Non-adjacent Swaps
Time limit: 2 seconds

You are given a permutation. In one step, you can swap any two adjacent elements if their values differ
by more than one.

Consider all permutations that can be obtained using these operations, starting from a given permutation.
Define a distance between two permutations as the minimum number of these operations required to
transform the first permutation into the second one.

Find the number of permutations that can be obtained and the sum of distances to all those permutations
from the starting one.

Input
The first line contains the integer n (1 ≤ n ≤ 100) — the permutation size. The second line contains n
distinct integers ai (1 ≤ ai ≤ n) — the starting permutation.

Output
Output two integers, the number of obtainable permutations, and the sum of distances to those
permutations. Calculate both numbers modulo 1 000 000 007.

Scoring

Subtask Points Constraints
1 15 n ≤ 8

2 20 n ≤ 15

3 30 n ≤ 30

4 20 n ≤ 50

5 15 No additional constraints

Examples
standard input standard output

4
3 1 4 2

5 5

5
1 2 3 4 5

1 0

6
5 3 1 2 4 6

61 218

Note
In the first example, you can obtain the following permutations:

• [3, 1, 4, 2], in 0 steps;

• [3, 1, 2, 4], in 1 step;

• [1, 3, 4, 2], in 1 step;

• [3, 4, 1, 2], in 1 step;

• [1, 3, 2, 4], in 2 steps (swap two pairs of elements with values (3, 1) and (4, 2)).

Page 8 of 9

Innopolis Open 2022-2023
Final round

Russia, Innopolis, February 12, 2022

There are five permutations in total; the sum of distances also equals five.

In the second example, you can’t perform any swap, so only one permutation is reachable with a distance
of 0.

Page 9 of 9

