Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

Problem A. Coffee Cocktail

Problem author: Georgiy Charkovskiy, developer: Konstantin Bats

Let’s simplify the problem right away: information about the total mass of each ingredient and the

caffeine content in it is unnecessary, we can immediately move on to considering the mass of caffeine in

each ingredient ("ﬁ]gl), as the rest of the mass is not of interest to us. Let’s denote this mass as ¢;.

Subtask 1

In the first subproblem, it was guaranteed that there is no more than one type of snack. This means that
if the answer exists, it is equal to 1. Therefore, it is sufficient to check that all the snacks taken together
are enough to reach x caffeine.

Subtask 2

In the second subtask, on the contrary, all types of snacks are different. In this case, for all snacks, m;
and k; are the same, and therefore ¢; are also the same and equal to m;. Therefore, to reach x caffeine, at

least {%1 snacks will be needed, and this number will be the answer (or —1 if n snacks are not enough).

Subtask 3

The solution to the third subtask already brings us closer to the complete solution. If all k; are equal, and
t; are different, then the answer will simply be the number of different snacks taken. At the same time, to
reach z caffeine with the minimum number of snacks, it is sufficient to choose snacks with the maximum
caffeine content, which in this case corresponds to the maximum m;. So it is enough to sort all the snacks
in descending order of m; and choose in that order until x caffeine is reached or until the snacks run out.
The time complexity of the solution is O(nlogn).

Subtask 4

Similar to the previous subproblem, but now it is necessary to explicitly calculate ¢; and sort in descending
order of ¢;, after which to collect in that order. It was worth doing calculations in integers and using 100-¢;
to reach 100 - z caffeine, however, in the constraints of this problem, the precision of double should also
have been sufficient.

Subtasks 5 and 6

The final idea necessary for the complete solution is grouping by types of snacks. If all k; are equal, then
it is most advantageous to first collect snacks of maximum mass. But if we have one snack with a mass of
100 of one type and two snacks with masses of 51 of another type, then it is advantageous to start with
them. Indeed, as soon as we choose one snack of a certain type, there is no point in not taking all the
other snacks of the same type, as we will approach the goal, and the answer will not increase.

Thus:

1. Calculate for each type of snack from 1 to ¢ the total mass of caffeine in snacks of this type. In

subproblem 5, it is sufficient to calculate the total mass and multiply by the same 1%'0.

2. Order the types in descending order of the sum of ¢;.

3. Collect caffeine in this order until we reach x or until the types run out.

Page 1 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

4. The number of types used will be the answer.

The time complexity of the solution is still O(nlogn).

Problem B. Fraction Conversion
Problem author and developer: Egor Yulin

Let’s start by making some basic observations for all subtasks:

e a does not affect the answer — the integer part can be represented in any number system;

e 0.b(c) can be written as wim + fgmrE t TomreE T

e if a number is represented as a common fraction %, then the answer to the problem will be the

minimum z such that z* is divisible by y for some integer k.

More about the last point: we want to represent the number as a sum of terms of the form % for integer
1. Moreover, if the sum is finite, then all terms can be brought to a common denominator by the smallest
entered i: for example, 5% + 5% + % = 3+52571'253 Similarly, the reverse is also true: if a fraction is written
in the form 7, then it can be represented in the number system with base z by expanding this fraction
into corresponding terms.

Thus, if we convert the given fraction to canonical and irreducible form £ and factorize y into primes as

y=pg' ... - pyt, then the answer will be ¢ = py - p2 - ... - pr, because by multiplying the numerator and

denominator by the same number, the fraction can be brought to the form Cm"’fﬁ

Subtask 1

However, for solving the first subtasks, it was not necessary to conduct so many reasoning, although they
will be useful for us. In the case of m = 0, kK = 1, there are only 10 possible variations of how the fraction
will look — from 0.(0) to 0.(9). For each of them, the answer can simply be calculated manually: 0.(0) = 0,
the answer is 1, 0.(1) = §, which can be represented as 0.01 in the ternary system (the answer is 3), the
rest will also give the answer 3, except for 0.(9) = 1, for which the answer is 1.

Subtask 2

In the case when m = 1 and k = 1, the fraction is represented as % + 55- In other words, 9%‘56. If the
numerator and denominator are reduced, then for each possible denominator, the answer can be explicitly
written, or in the program, the obtained denominator can be factorized into primes and multiplied: the
answer will be the product of some subset of elements from {2, 3,5}.

Subtask 3

In subtask 3, it was guaranteed that the fraction has no period. In this case, its conversion to a common
fraction is simply finding gcd(b, 10™), and, moreover, we already know that the answer ¢ < 10, because
in the decimal system it can be represented without a period.

It is enough to check if b is divisible by 2™ and by 5™, and if so, the corresponding prime will be canceled
out from both the numerator and the denominator, and will not enter as a factor in the answer. For
example, the second example — (.25 represents % or i, which can be represented as 0.01s.

Page 2 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

Subtask 4
Similar reasoning works here as well, but we just need to simplify the infinite sum. Let’s simplify it
immediately in the general form: M)Lm + {gmsr + jgmeer T+ ... contains a geometric progression with a

1

1o+ SO this sum can be rewritten as

denominator of

b N c- 10k
10m © 10m - (10k — 1)

In this subtask, m = 0, so b is absent, and the problem also reduces to finding gcd(c - 10¥,10¥ — 1) and

- 10k -1
factorizing ged(e 105 10FT)

gcd(c, 10% — 1), after which the remaining denominator can be factorized into primes in O(v/10% — 1).

into primes. Since 10¥ and 10* — 1 are always coprime, it is sufficient to find

Subtask 5

In the case when m + k < 12, 10% + #8,’2_1), which can be rewritten as

(10¥ — 1)b + 10%¢
10m - (10k — 1)

has both the numerator and the denominator up to 10'2. Therefore, with the same approach, it remains
to find their ged, divide the numerator and denominator by it, and factorize the remaining denominator
into primes, which fits within the time constraints.

Subtask 6

For a complete solution, it is necessary to use a small trick. Let’s immediately factorize the denominator
into prime numbers: 10" - (10k — 1) contains 2™, 5, and the factorization of 10F — 1, which can be found
in O(V10F). Tt remains to determine which of these primes are included in the numerator and will be
canceled out.

For this, let’s immediately notice that the sum of two numbers is always divisible by the smaller of the
exponents of the prime in which it enters as terms (for example, 4 + 32 is divisible by 22, but not by 23).
And then:

e 2 and 5 enter 10¥c with an exponent of k + deg(c), where deg(c) — the exponent of their entry in
¢, which can be found in O(logc);

e in (10F — 1)b, they enter exactly with an exponent of deg(b), because 10¥ — 1 is not divisible by
either 2 or 5;

e the primes from the factorization of 10¥ — 1, on the contrary, do not enter 10¥, so in the numerator
(10¥ — 1)b + 10%¢, their exponent of entry is equal to deg(c) for the reasons described above.

For each prime from the factorization of 10¥ — 1, we can independently find its exponent of entry in ¢,
or we can immediately calculate gcd(10* — 1,¢). After that, it remains only to cancel for each prime its
entry in the numerator and denominator, and multiply the primes that remain in the denominator in a
non-zero exponent. The obtained product will be the answer.

Problem C. Public Transportation

Problem authors: Daniil Oreshnikov and Georgiy Charkovskiy, developer: Daniil Oreshnikov

Page 3 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

Subtask 1

Let’s look at a matrix where 1 < ¢; ; < 2. Notice that for a triangle to be good, there must be at least the
number 2 in its right angle (since @ > 0 and b > 0). At the same time, the sum of the other two angles
must be equal to the right angle. If we add d < 0 to the matrix, there will be no suitable candidate to be
a right angle. If we add d > 0, then the sum of the two acute angles will be at least 2(1 + d), which is
guaranteed to be greater than the maximum possible value in the right angle 2 4 d.

Thus, it is sufficient to simply count the number of good triangles in the given matrix. Such triangles have
the form t; ; = 2, t;11; = t; j+1 = 1. The number of twos, next to which there are ones to the right and
below, can be counted by traversing the matrix in O(nm) time.

Subtask 2

For each triangle when n = 2, it must have a right angle in the first row, and one of the acute angles in
the same column in the row below. We will iterate through all possible pairs of angles in the first row in
O(m?) and check if the corresponding triangle can be good.

Let’s say we consider t1; = x, t2 ; = y and t;; = 2. Then we need to add such a d so that t; ; becomes
equal to the opposite side, i.e., 1. In other words, the only suitable d is 1 —#; ;. We will add it to ¢; ; and
t9,;, and check that the remaining conditions are met.

Subtask 3

Similar to the first subtask, we notice that it makes sense to consider only d from — max(7")+2 to max(7T).
If we add a smaller value, there will be no numbers > 2 left. If we add a larger value, the sum of any two
cells will be greater than any other.

We will iterate through d from —50 to 50, and then in O(n?m?) we will iterate through all possible
triangles and check them for “goodness”. Such a solution, with efficient implementation, passes the tests
of the third subtask.

To guarantee passing this subtask, it should be noted that each selected triangle can be good for no more
than one specific d. Indeed, if one d fits, then any other will violate the equality between the value in the
right angle and the sum of the values in the acute angles. At the same time, a potentially suitable d can
be calculated using the formula. If there is an z in the right angle, and y and z in the acute angles, then
we need to ensure that +d = (y + d) + (z + d), from which d = = — y — z. It remains to iterate through
all triangles in O(n?m?).

Subtask 5

If we further optimize the iteration, we can pass subtask 5. Let ¢; ; = x, and t;4,; = y. Notice that by
the condition, the value y must be exactly a less than the value z. If this is not the case, we will stop the
iteration and move on to the next values.

In a randomly generated table, there will be few pairs of values with this property, so the iteration in
O(n?m?) will actually perform about O(n?m) actions, since for a large number of cell pairs, the third
angle of the triangle will not even be iterated.

Subtasks 4 and 6

Let’s further improve the idea described above. Notice that for all three cells of a good triangle, the
condition row + col + value = const is satisfied. In other words, the sum of the value, row number, and
column number is the same and equal to i + j + a + b. Thus, it is sufficient to only consider groups of cells
for which this value takes the same value.

Page 4 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

It remains only to notice that for any triangle, where all three vertex cells have the same value of this
quantity, there will be a unique suitable d to make the triangle good. Then, to solve the fourth subtask,
it is sufficient to independently iterate through cells with the same value in the row and cells with the
same value in the column, and then add the product of their quantities to the answer.

For a complete solution, it is only necessary to make a pre-calculation using a hash table and find for
each possible value ¢; ; + ¢ + j the number of cells with this value in each row and each column. Then, it
is sufficient to iterate through all cells and for each cell add to the answer the number of cells with the
same value below it, multiplied by the number of cells with the same value to the right of it. The time
complexity of the complete solution is O(nm).

Problem D. Restore Permutation

Problem author and developer: Daniil Oreshnikov

Subtask 2

We will skip a separate solution for subtask 1, as almost any of the solutions described below can be
generalized to it. To solve subtask 2, it is sufficient to directly encode the original permutation, and
then reconstruct it from the encoded string. To do this, note that to represent numbers from 1 to n,
[log, n] bits are sufficient, that is, in general, no more than 20 bits per number. We will write out the bit
representations of each element of the permutation in turn, using the same number of bits, and then on
the second run, we will reconstruct the entire permutation.

Subtask 3

This subtask stands slightly apart from the others, as the expected solution in it does not directly
generalize to the following subtasks. We will calculate the polynomial hash of the permutation, that

n .

is, (Z it pi> mod M for some prime x and M. We will write the binary representation of this hash
i=1

as the answer.

Note that when swapping elements p; and p;, the hash of the permutation changes by (p; — p;) - (2% — z7).
After reading the permutation ¢ and calculating the initial hash, we will calculate the new hash from g,
and then iterate over ¢ and j, and check if the old hash differs from the new one by this value.

Since the permutation can have a length of up to 2000, there are around 4-10° possible outcomes, so if the
hash is calculated modulo M ~ 10°, with a sufficiently high probability, there will be a unique suitable
pair (4, 7). This solution works in O(n?), which does not allow it to be applied to permutations of greater
length.

Subtask 4

Subtask 4 did not have a specific author’s solution and was designed for participants to come up with
their own approach, fundamentally different from the ideas described in this tutorial.

Subtask 5

By slightly changing the approach with hashes, we can solve the following subtask. To do this, we will
divide the entire permutation into blocks of approximately size 5000 and independently calculate the hash
for each of them. On the second run, we will divide the permutation ¢ into the same blocks, calculate the
hashes, and see which blocks have changed.

Page 5 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

If only one block has changed, we can use the previous solution to find the pair of changed elements in
it. If two blocks have changed, we will similarly iterate over the position in the first and second blocks,
and check that their exchange returns all hashes to their original values.

Subtask 6

The second method that could be applied in this problem is similar to the Hamming code. We will calculate
several sums of the elements of the permutation, so that we can reconstruct the changed elements with
some accuracy. Specifically, for each b, we will calculate the sum of all elements at positions whose bit
number b is equal to 1. For this, we will first pad the permutation with zeros to a length equal to a power
of two.

Then ¢y — the sum over all positions with 1 in the zeroth bit, that is, over all odd positions, ¢; — the
sum of all elements at positions with 1 in the first bit, and so on, ¢[g,,7 — the sum in the second half
of the permutation. We will output all [log, n] such sums in turn as a bit string.

On the second run, we will calculate the same sums for the permutation ¢. Each sum either changed or did
not. If the sum did not change, then both numbers that changed places either were included in the sum
or were not, that is, the corresponding bit of the changed positions is the same. If the sum changed, then
exactly one of the numbers was included in the sum, and the corresponding bit of the changed positions
is different. In other words, we precisely reconstruct ¢ @ j, where ¢ and j are the sought positions, and @
is the bitwise exclusive OR. Moreover, the sum that changed changed exactly by £(p; — p;).

This code stores about log,n sums, each of which is about n?, that is, it takes up 2logyn bits.
Unfortunately, this is not always enough to uniquely reconstruct the exchanged numbers. However, in
a similar way, we can calculate the sums not of p;, but of p?, then we will know |p; — p;| and |pf — pj2|
Knowing these two values, we can reconstruct p;+p;, and with its help — the numbers p; and p; themselves.
In total, this approach requires about 5log3 n ~ 2000 bits.

Subtask 7

To further reduce the number of stored bits, we will do two things:

1. we will calculate XOR instead of sums, reducing the number of bits from 2log3 n to logs n ~ 400;

2. we will write down the polynomial hash of the permutation next to it (in fact, two hashes, so that
the probability of collision is negligibly small) — this is an additional ~ 60 bits.

Since the Hamming sums allow us to find ¢ @ j, we will simply iterate over ¢, find the corresponding j
with a single bitwise operation, and check that when they are exchanged, the hashes return to the original
remembered values.

Fl.l].l SOllltiOIl [credit to: Sergey Zolotarev]

The full solution requires moving away from the idea of Hamming codes and simply coming up with a
more suitable hash function. Let’s introduce the following function:

f(k) = (i ik -pi> mod (4n**1).

=1

Now we will calculate and write f(1), f(2), and f(3) as the answer. This will take 42 + 62 + 82 bits,
which, however, requires calculations using __int128_t or long arithmetic. Now, if we know these values
for both p and ¢, it is enough to look at how they change when p; and p; are swapped.

With such an exchange, f(k) changed by —i*p; — j¥p; +i*p; + j¥p;, that is, by (p; — pj) - (4% — i*). Thus,
we will know (p; —p;) - (i — j), (pi —pj) - (i* — j%), and (p; — p;) - (i* — 73) according to the corresponding

Page 6 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

moduli. By iterating over ¢, we can with a high probability uniquely reconstruct the only suitable j. For
a detailed description of the required transformations, we suggest you refer to the source code of the full
solution in the Olympiad archives.

Problem E. DequeQL

Problem author: Daniil Oreshnikov, developers: Daniil Oreshnikov and Konstantin Bats

Subtasks 1 and 4

To solve subtask 1, it was possible to write any inefficient solution that correctly performed the operations
described in the statement. In general, it should be noted that if deque do has exactly ¢ children, and
deque dj is at position j in it, numbered from 1, then to extract d; from do, if do is already the root, it
will take min(j,7 — j + 1) pop operations.

Therefore, for subtask 4, it was sufficient to write a careful simulation of all operations and maintain for
each deck the sequence of deques directly nested in it ch(d), its “parent” p(d) — the deque in which it is
contained, and its position in the parent idx(d). Then the answer to the query pop_complexity(d) is

min(idx(d), |ch(d) — idx(d) + 1|) + pop_complexity(p(d)),

because to extract the deque, you need to first extract its parent to the top level, and then extract this
element from the parent. Such a formula can be computed in O(n).

Subtasks 2 and 3

In these two subtasks, it was guaranteed that at any given time, each deque contained no more than 2 or
3 other deques directly. In the first case, it is clear that any element can be extracted from its parent in
one operation: one pop_front if it is the first element, or pop_back if it is the last.

In this case, the pop_complexity of any deque is simply its depth in the tree of nesting. It is not difficult
to maintain the depths of vertices during all operations: any operation changes the depths of the entire
subtree by the same amount, so they could be maintained using implicit treaps built on Euler tours.
Alternatively, it could have been done by performing a root decomposition on the queries, rebuilding all
active nesting trees in each block and calculating the depths, after which each individual query from the
block would be considered separately.

In the third subtask, deques appear, the extraction of which from the parent requires two operations.
Such a deque among the “children” of a specific deque can only be one — the central one out of three. In
this case, the answer for its entire subtree increases by 1 compared to the above-described answer for the
case |ch(d)| < 2. Such additions and subtractions could also be carefully maintained using Euler tours on
the nesting trees. Euler tours in this case should be stored, listing each vertex only once - when entering
it. The time complexity in both cases is O((n + m)logn).

Subtask 5

This subtask differs from the previous ones in that it is sufficient to simply simulate operations on the
deques, building a forest of nesting trees, and then calculate for each vertex its pop_complexity using
the formulas mentioned above in a single dfs pass. Then the precomputed values can be used to answer
queries.

Subtask 6

If there are no pop operations, the nesting trees only grow. It can be noticed that in this case, the
pop_complexity of each deque does not decrease, and moreover, as soon as a deque ceases to be the root,

Page 7 of 8

Innopolis Open 2023. Qualification Round 2
Russia, Innopolis, December, 17, 2023

it will never become the root again.

If we expand the sum considered above, it can be noticed that during the life of any deque, only the last
term in the sum changes, and sometimes (when the root deque is added to another), a new term equal to
1 is added to the end. Again, as noted in the solutions for the third and fourth subtasks, the operation
“add 1”7 on the subtree of a vertex can be implemented using Euler tours on the nesting trees. And the
operation of increasing the last term in the sum can be handled more implicitly:

1. for each deque, divide all time into periods with the same ancestor-root;

2. for several deque with the same ancestor-root, all subsequent periods will be the same (the period
ends when the ancestor-root is added to another deque, and it becomes the new ancestor-root);

3. at the beginning of the period, maintain the current pop_complexity of all deques;

4. during the period, to answer a query, it is enough to take the known sum at the beginning of the
period, and then take into account how many children were added to the ancestor-root on each side
by that moment;

5. at the end of the period, it is necessary to fix and recalculate the pop_complexity of all deques —
for this, it can be noted that for each immediate child of the current ancestor-root, the “distance” to
the edge of the parent deque has changed by a known amount, and it is possible to simply update
the Euler tour treap for its entire subtree.

Subtask 7

And finally, for the complete solution, it was necessary to notice that with each push or pop operation, the
value of pop_complexity changes for all children of deque dy located between the “middle” (the central
child by position) and the changing edge, exactly by 1.

Sequential children of the same deque together with their subtrees, speaking in terms of nesting trees,
form a continuous segment in the Euler tour. Therefore, if the size of its subtree and all its children is
stored for each deque, then for each operation it is sufficient to add +1 or —1 to the segment in the
Euler tour corresponding to the left or right half of the children of the corresponding deque (which can
be identified if split is implemented by a pointer to the vertex, and not by the number of vertices).
Accordingly, it only requires a small carefully implemented modification to the solution described above
for subtasks 3 and 4. The time complexity remains O((n + m)logn).

Page 8 of 8

