
Innopolis Open 2021-2022
Final round

Russia, Innopolis, February 20, 2022

Problem Tutorial: “Designing a New Logo”
For the first subtask, you can fill the logo from top to bottom taking two horizontally adjacent cells at a
time.

For the second subtask, select cells (2, 2), (2, 3), (2, 4), . . . (2, 2b) (this gives you b black and b − 1 white
cells). Then, add white cells adjacent to selected black cells. Since we can add any number of white cells
up to 2b+ 2 white cells, we can get to any number of white cells.

For the third subtask, select cells (2, j) (2 ≤ j ≤ 4m − 2), then cells (i, 2) (3 ≤ i ≤ 4n − 2). Similarly,
add adjacent white cells to the base solution to match the required count. This solution gets up to
b = (2m− 1) + (2n− 2) black cells, with b− 1 white cells between them, then we can add any number of
white cells up to 2b+ 2.

For the last subtask, again, start with the base solution that looks like (2, j) (2 ≤ j ≤ 4m − 2), and
(i, 2 + 4j) (3 ≤ i ≤ 4n − 2, 2 ≤ 2 + 4j ≤ 4m − 2), then add the necessary amount of white cells. The
number of black cells in this solution is bounded by b = (2m− 1) + (2n− 2) ·m = 2nm− 1 ≥ nm, which
is enough to solve the problem.

Page 1 of 5



Innopolis Open 2021-2022
Final round

Russia, Innopolis, February 20, 2022

Problem Tutorial: “Even Tree”
First, note that the problem asks to find a spanning tree with an even number of edges of odd weight.
Consider the connected components restricted to only even edges. Within each component, we can exactly
choose a spanning tree with all even edges, or a spanning tree with exactly one odd edge, if a connected
component contains one. So there are three cases:

1. We have an odd number of even-edge connected components — then we need to build each internal
part of the components from all even parts and connect all the components;

2. We have an even number of components, and there are no odd edges inside the components (that
is, between two vertices from the same component) — then we can’t build a spanning tree of even
weight;

3. We have an even number of components, and there is an odd edge inside the components — then
we must take this edge and take the remaining edges in the same way as in the first case (that is,
we will replace one even edge with an odd one).

This process can be implemented, for example, as follows: let’s build a tree traversal in the DFS order. If
this tree is already even (that is, the total weight of the edges is even), then we output it. Otherwise, we
need to find a back edge (in the DFS tree) that can be replaced by an edge of different parity. If we fail
to find such a pair of edges, the answer does not exist.

Problem Tutorial: “Primle”
Let’s discuss solutions for all subtasks in order.

The first two subtasks were designed to make any non-trivial solution pass. For example, you can ask
random numbers/random primes and then figure out the answer based on the information received. With
high probability, we will see at least one + in each of the five positions. To do it in hard mode, you need
to be able to generate a random prime number.

In the third and fourth subtasks, you can come up with a set of 9 numbers such that every position contains
nine out of ten digits. In easy mode you can use 11111, 22222, . . . , 99999. In hard mode, you should find
nine numbers with these properties (except for the least significant digit). Given this information, you
can find out the secret prime number.

In the fifth and sixth subtasks, you can optimize the previous solution. Ask 01234 and 56789 (or 65423
and 91807 in hard mode). We learn the set (without multiplicities) of digits in the secret prime using
the responses to these queries. Similarly to the previous solution, figure out the answer using only four
queries.

Page 2 of 5



Innopolis Open 2021-2022
Final round

Russia, Innopolis, February 20, 2022

Finally, there are many possible solutions for the last two subtasks. Let’s describe one possible approach.
During the process of guessing the number, at each step, we have a set of prime numbers that satisfy
all the information we have. Every query splits this set into 35 subsets, out of which we only retain one.
Whenever the current set has only one number left, it is the secret prime. Since the problem asks for you
to find the secret prime in L queries for all possible secret prime, it makes sense that we want to make
the "worst"possible case as good as possible. Thus, let’s pick a new guess in such a way that minimizes
the maximum of all 243 sets. If you follow this strategy, you solve almost all primes in ≤ 4 queries, and
only about 50 primes will require 5.

Bonus: come up with a strategy that solves any prime number in 4 queries.

Problem Tutorial: “Add and Multiply”
First, if ai ≤ bi for all i (or the other way around), the solution exists if and only if the two input arrays
are the same. In this case, print ci = 0, otherwise, there is no solution.

Now, we will constructively prove that if there is a pair i, j, such that ai < bi and aj > bj , then there is
a solution.

First, let’s solve for n = 2. Without loss of generality, a1 < b1, a2 > b2. Consider c1, c2 ≥ 0, where
(a1+c1)(a2+c2) = (b1+c1)(b2+c2)⇒ (a1+c1)(a2+c2)−(b1+c1)(b2+c2) = 0. Expanding the products,
we get a1a2−b1b2+c1(a2−b2)+c2(a1−b1) = 0. Rearranging the terms, c1(a2−b2)−c2(b1−a1) = a1a2−b1b2.
Turns out, this linear Diophantine equation always has a nonnegative solution.

Let’s apply the extended Euclidean algorithm. Recall that for this algorithm to work, we need a1a2− b1b2
to be divisible by d = gcd(a2−b2, b1−a1). This is always true, since if a2 = b2 (mod d), b1 = a1 (mod d),
then a1a2 − b1b2 = b1b2 − b1b2 = 0 (mod d). Since a2 − b2 > 0 and b1 − a1 > 0, by taking the solution
of (a2 − b2)x − (b1 − a1)y = 0 and repeatedly adding it to the base solution, we can always make it
nonnegative.

Let’s solve the general case. To do it, we will basically merge all i with ai > bi into a single pair. Consider
the example:

a 9 10
b 5 3

Notice that if we add 6 to the second column, and take the product, 9 cancels out:

a 9 16
b 5 9

Now we can replace these two pairs with a pair a = 16 and b = 5. Adding x to the new pair is the same
as adding x to both original pairs.

In general, take all columns with ai > bi, sort them in order of decreasing bi, and, in this order, make ai
and bi+1 equal. On each step we add some nonnegative number to ci, because bi+1 ≤ bi < ai. Thus, in
O(n) time we turn all columns with ai > bi into one. We apply a similar process to pairs with ai < bi. All
that’s left is to solve for two pairs.

Problem Tutorial: “Draft Laws”
In this problem, we need to find the number of ways to color the tree in k (modulo a prime number),
given colors for some vertices.

Subtask 1 can be solved with brute force over all kn colorings.

Subtask 2 is based on the fact that there are precisely two ways to color a tree in two colors: after fixing
the color of vertex 1, the colors of all other vertices can be determined uniquely. Thus, we can try both
colorings and check whenever they satisfy the conditions.

Page 3 of 5



Innopolis Open 2021-2022
Final round

Russia, Innopolis, February 20, 2022

In subtask 3 there are no pre-colored vertices. It is easy to see that the answer is k(k − 1)n−1: for vertex
1, we can choose any of k colors; then, for all neighbors of vertex 1 we can choose any of k− 1 remaining
colors; for all vertices at a distance 2 from the first vertex we also have k− 1 possible options, and so on.

Subtasks starting from 4 can be solved by a dynamic programming approach. Root the tree at the vertex
1. Let dpv,c be the number of ways to color the subtree of v (satisfying all conditions) such that vertex
v has color c. Then, the value dpv,c can be calculated knowing the dp values of all children. In the case
av = 0 we get:

dpv,c =
∏

u is a child of v

∑
d 6=c

dpu,d

because for each child u we can independently choose any color d 6= c. In the case av 6= 0 the formula is
the same except that dpv,c = 0 when c 6= av.

The naive way of calculating this dp gives an O(nk2) solution (for each of n− 1 edges we go through all
O(k2) pairs of colors (c, d)), which passes subtask 4.

We can easily optimize this solution in the following way: when calculating dpv,c and when child u is
fixed, instead of calculating the sum over all d 6= c, let’s also calculate sumv =

∑k
c=1 dpv,c for all vertices

beforehand. Then, we can just take sumu−dpu,c instead. This is an O(nk) solution, which solves subtask 5.

To solve other subtasks, we need to remove k from the time complexity. Out of all k colors, only at most
n are present in the tree (on pre-colored vertices). Let v be any vertex. Note that if c1 and c2 are two
colors that are not present in the subtree of v, then the following equality holds:

dpv,c1 = dpv,c2

We can prove it by establishing a one-to-one correspondence between colorings of the subtree of v, where
v has color c1, and colorings, where v has color c2: it is sufficient to swap colors c1 and c2 (color in c2
all vertices which were colored in c1 and vice versa). This transformation doesn’t break any constraints.
Thus, there are equally many of these colorings. This gives us the key idea: for all colors which are not
present in the v subtree, we store one common dp value, which we denote as otherv.

To solve subtask 6, it is sufficient to get rid of all colors which are not present on the entire tree.
Let’s implement “coordinate compression”: re-enumerate all colors present on the tree with numbers
0, 1, . . . , D − 1, where D is the number of distinct colors in the tree. Then we calculate similar dpv,c,
but with 0 ≤ c < D, and at the same time calculating and considering otherv. Thus, when av 6= 0 we get:

dpv,c =
∏

u is a child of v

(
sumu + (k −D) · otheru − dpu,c

)
This solution works in O(nD) (where D is the number of distinct colors on the tree). In particular, we
can estimate this as O(n ·min(n, k)) or as O(n2).

In subtask 7 the tree is a path (a bamboo). Let’s split it into parts surrounded by pre-colored vertices.
Previously we calculate Am — the number of colorings of a path with m vertices, where the colors of
ending vertices are fixed and equal; and Bm — the same quantity, but if the colors of ending vertices are
fixed and different. We can calculate those using the following recurrence relations:

Am = (k − 1)Bm−1, A1 = 1

Bm = Am−1 + (k − 2)Bm−1, B1 = 0

Each part can be independently colored in Am or Bm ways (depending on the colors of the ending vertices).
Thus we can take the product over all parts.

Now let’s move to full solution. In the same way we will be calculating subtree dp. For vertex v we will
store values dpv,c (for colors c which are present in the subtree of v) in an associative array Hv (for
example, std::map in C++) in which colors c will be keys and numbers dpv,c will be values. We will also

Page 4 of 5



Innopolis Open 2021-2022
Final round

Russia, Innopolis, February 20, 2022

store sumv — the sum of all the values in Hv, cntv — the number of values in Hv and otherv — the dp
value for all other colors.

We will use the “smaller to larger” technique. For each vertex v we consider its child b with the largest
size of Hb. Firstly, in O(1) we set Hv := Hb (with some details to make values correct), and then for all
other children u 6= b we will move all elements of Hu into Hv straight-forward, by going through all of the
container Hu. We claim that these iterations in subtrees of other children will take O(n log n) moves in
total. It is because we always move an element into a container that previously had more elements. So,
the size of the container of color c at least doubles each time c is moved. It means that color c will move
at most O(log n) times.

At first, let’s figure out how to achieve the initial dp values for vertex v from values in Hb. For each color
c in Hb, we want to calculate:

dpv,c := sumb + (k − cntb) · otherb − dpb,c

In other words, if we denote T = sumb + (k − cntb) · otherb, we need to firstly set Hv := Hb and then for
each value x in Hv we need to apply linear function:

x 7→ −x+ T

These operations can be performed in a “lazy” way: instead of applying this function for all values by
manually going through them, we will save this function next to the container and denote it as fv(x). To
get the actual value of dpv,c we just need to apply function fv(x) to the number that is actually stored
in Hv. Initially, fv(x) is equal to the identity function x 7→ x. When operation “apply linear function
g(x) = px+ q to all values in Hv” takes place, we will update coefficients of fv(x) and values of sumv and
otherv in such way (before we had fv(x) = ax+ b):

fv(x) := g(fv(x)) = (pa)x+ (pb+ q)

sumv := p · sumv + q · cntv
otherv := p · otherv + q

Thus, processing child b is now a single operation that we perform lazily in O(1) time.

Now consider other children u 6= b. If color c is not in Hu, then

dpv,c := dpv,c · (sumu + (k − cntu − 1) · otheru)

Or, if we denote Q = sumu + (k − cntu − 1) · otheru:

dpv,c := dpv,c ·Q

If c is in Hu, then:
dpv,c := dpv,c · (sumu + (k − cntu) · otheru − dpu,c)

Let’s first apply linear function x 7→ Qx to all values in Hv. Then, we will manually go through all colors
c in the subtree of u, and for each one of them we will make the following change:

dpv,c := dpv,c ·Q−1 · (sumu + (k − cntu) · otheru − dpu,c)

Here, Q−1 is the multiplicative inverse of Q modulo M = 109 + 7. However, this fails when Q ≡ 0
(mod M). In this case we proceed the other way: let’s first calculate and save the new values of dpv,c
for all colors c in Hu. After operation “multiply all the values in Hv by 0” all values in Hv will become
zero. So, we can completely clear Hv and also set sumv = otherv = 0 and set fv(x) equal to the identity
function x 7→ x. After that we can again go through all colors c in Hu and set the previously saved values.

Finally, we achieved an O(n log2 n) solution. Note that we can also get O(n log n) by using
std::unordered_map instead of std::map. However, in practice it is usually slower.

Page 5 of 5


