
Innopolis Open 2024-2025
Second qualification round

Innopolis, December 29, 2024

Problem Tutorial: “Enchanted Cat”
Note that the number of integers from 1 to m that are divisible by k is equal to

⌊
m

k

⌋
. Therefore, the

number of integers from l to r that are divisible by k is equal to
⌊
r

k

⌋
−
⌊
l − 1

k

⌋
.

Thus, the number of suitable positive integers according to the problem statement is equal to⌊
10n − 1

2x

⌋
−
⌊
10n−1 − 1

2x

⌋
. The number 0 will be suitable when n = 1 and any x. The asymptotic

complexity of such a solution is O(1).

For solving subtasks 1, 2, and 3, one could separately consider the calculation of the number of numbers
divisible by 2, 4, and 8, respectively. In subtasks 4 and 6, one could iterate through suitable numbers with
a step of 2x. In subtask 5, the first suitable number is 10n−1, and 10n−1 > 0.

Problem Tutorial: “SuperSavings”
Note that if it is possible to perform x operations, it is also possible to perform x−1 operations. Therefore,
we can solve the problem using binary search on the answer.

We need to learn how to determine whether it is possible to perform x operations.

Suppose it is possible, and the way to do this involves c1 operations from partner 1, c2 operations from
partner 2, ..., cn operations from partner n. Then, for this to be possible, all constraints on the array c
are as follows:

• c1 + c2 + . . .+ cn = x

• ci ≥ 0

• ci ≤ ai

• x− ci ≤ bi

That is, for each ci there is a constraint: max(0, x − bi) ≤ ci ≤ ai. Therefore, if for some i it turns
out that max(0, x − bi) > ai, it is impossible to perform x operations, as there is no suitable value
for ci. Otherwise, we note that

∑
ci can take any value from

∑
max(0, x − bi) to

∑
ai. Therefore, if∑

max(0, x − bi) ≤ x ≤
∑
ai, it is possible to choose ci such that

∑
ci = x, and thus it is possible to

perform x operations. Otherwise, achieving
∑
ci = x is impossible, which means performing x operations

is also impossible. This check is performed in O(n), and the asymptotic complexity of the entire solution
is O(n logA), where A = 2 · 109, the maximum possible answer to the problem.

Problem Tutorial: “To School Through the Snow”

Subgroup 1. l = 1, dt = 0

In this subgroup, the amount of heat does not change when passing through any transition. Thus, the
problem reduces to the shortest path problem.

In this subgroup, l = 1, therefore BFS will find such a shortest path in O(n+m).

Page 1 of 5



Innopolis Open 2024-2025
Second qualification round

Innopolis, December 29, 2024

Subgroup 2. dt = 0

As in subgroup 1, the problem reduces to the shortest path problem. However, now the transitions can
be of arbitrary length, so in this subgroup, the shortest path problem should be solved using Dijkstra’s
algorithm. We will obtain a solution in O(m · log(n)).

Subgroup 3. dt > 0

In this subgroup, the amount of heat can only increase. Let’s keep track of dp[t][u] - the length of the
shortest path to intersection u with a heat level of t. Then dp[t][u] is recalculated based on transitions
from values with a lower t.

We will iterate over possible values of t from 0 to 30, recalculating the lengths of the shortest paths based
on transitions from already considered states.

We will obtain a solution in O(61 · (n+m)).

Subgroup 4. The graph is acyclic

In this subgroup, the graph has no cycles.

We will find a topological sorting of the graph — an order of vertices such that all edges lead from left to
right. In this case, it is an order of intersections such that all transitions lead from an intersection with a
smaller number to an intersection with a larger number.

Let’s keep track of dp[u][t] - the length of the shortest path to vertex u with a heat level of t. Then dp[u][t]
is recalculated based on transitions in the order of topological sorting of intersections (in this order, all
transitions will lead from intersections with already calculated dp values).

We will obtain a solution in O(61 · (n+m)).

Subgroup 5. n,m ≤ 105,−30 ≤ dt ≤ 30

We solve the shortest path problem, while we want to calculate dist[u][t] for each intersection and each
heat level.

Notice that the set of states is not too large: there are only 61 different values of t.

We will construct a graph where vertex ut will represent such a state: we are at vertex u and our heat
level is t.

For transition u v l dt, we will add an edge of length l, leading from ut to vt+dt for all values of t.

In the resulting graph, we need to find the shortest path from vertex 10 to one of the vertices nt for some
t. We solve this problem by running Dijkstra’s algorithm from vertex 10.

We will obtain a solution in O(61 · (n+m) · log(n)).

Problem Tutorial: “New Year Experiments”

Subtask 1. n, q ≤ 103, t ≤ 5, all types of operations

To solve this subtask, the described process could be implemented. Queries of types 1–3 can be processed
in O(n), and to answer operation 4, one needs to access an array cell in O(1). To answer query 5, it is
necessary to create a copy of the array and sort it.

Page 2 of 5



Innopolis Open 2024-2025
Second qualification round

Innopolis, December 29, 2024

Subtask 2. n · q ≤ 108, t ≤ 2, all types of operations

To solve this subtask, it was necessary to speed up the previous solution, specifically to learn how to
answer query 5 in O(n). For this, an algorithm for finding the k-th order statistic in linear time is used.

Subtask 3. q ≤ 4 · 104, t ≤ 5, max ai < 210

There are at most 210 distinct numbers in the array a. We will use this to optimize the previous solution.
We will create an array d, where d[x] = x. Now, operations of types 1–3 will be performed on the array
d in 210. To answer query 4, we will use the value in the array a[i] as an index for the array d, that is,
d[a[i]]. We can answer query 5 in 210.

Subtask 4. No operation of type 5

For this subtask, it is necessary to construct a boolean function to answer queries of types 1–4 in O(1).

Subtask 5. n, q ≤ 2 · 105, no operation of type 3

Let’s consider how bitwise operations affect numbers. AND and OR affect numbers in the same way. For
a specific bit i:

• OR with one or AND with zero "collapses"bit i.

Such "collapsing"occurs no more than once for each bit. If after the next operation some bit "collapses we
recalculate the array from scratch. Thus, the array will be rebuilt no more than log(A) times. To answer
query 5, we create a copy and sort the array only if there have been AND and OR operations that
collapsed at least one bit beforehand.

Subtask 6. n, q ≤ 2 · 105, no operations of types 1 and 2

To solve this problem, it is convenient to use a data structure — a binary trie. We store the array of
numbers a in the trie, built from the most significant bits to the least significant. In this form, the
numbers in the tree will be sorted. If we store the count of numbers in the subtree at each node of the
trie, we can find the k-th largest element in the array in log(A), where A is the maximum number in the
array.

Now let’s consider the influence of bitwise operations on the trie.

• XOR with zero does not change the values of the bits or the structure of the tree.

• XOR with one swaps the children at each node of the trie at depth i.

For each depth i, it is sufficient to maintain a flag indicating which of the child nodes the zero bit leads
to.

Solution for full points

AND and OR affect the trie in the same way. For a specific bit i:

• OR with one or AND with zero "collapses"bit i, meaning that at depth i, all nodes will have
exactly one child node.

Page 3 of 5



Innopolis Open 2024-2025
Second qualification round

Innopolis, December 29, 2024

Such "collapsing"occurs no more than once for each bit. If after the next operation some bit "collapses we
simply rebuild the trie. Thus, the trie is rebuilt no more than log(A) times.

The final asymptotic complexity is O(n log2(A) + q log(A)).

Problem Tutorial: “Planet Parade”
To begin with, let’s solve the problem for α = −1. For this, we need to notice a property of the operation
mod: if ai < ai+1, then ai mod ai+1 = ai. Therefore, if in the permutation there is an index api < api+1 ,
then the entire sum ap1 mod ap2 + . . .+apn−1 mod apn will be ≥ api , and hence also ≥ min(a1, a2, . . . , an).
Thus, the only permutations for which it is possible to satisfy the condition for α = −1 are those in which
ap1 ≥ ap2 ≥ . . . ≥ apn . It is clear that the unique array {ap1 , ap2 , . . . , apn} with this property is the sorted
array a in non-decreasing order. The number of permutations that yield such an array can be calculated
using the formula c1! ·c2! · . . . ·ck!, where ci is the number of times the i-th smallest unique number appears
in the array a. Next, we will count the number of suitable unique arrays-permutations of the array a, and
then multiply the answer by this coefficient.

Thus, for the group α = −1, it is sufficient to check the sorted array a in non-decreasing order for
compliance with the condition.

Next, we move on to the group α = 0. Similarly, we will consider the sorted array in non-decreasing order
if it meets the condition. Now we need to consider all arrays such that there is at least one index ai < ai+1,
and at this index, the sum of the moduli will equal ai, which is certainly not less than min(a1, a2, . . . , an).
Thus, the only option when such an array will meet the condition for α = 0 is if ai = min(a1, a2, . . . , an),
and a1 mod a2 = 0, . . . , ai−1 mod ai = 0, ai+1 mod ai+2 = 0, . . . , an−1 mod an = 0.

In fact, we need to count the number of ways to split the elements of the array into two groups, so that
within the groups, each number divides every other, and the minimum of the array is contained in the
first group.

Let the array contain k distinct elements: b1 > b2 > . . . > bk in quantities c1, c2, . . . , ck (ci copies of the
number bi).

Then we can solve the problem using dynamic programming. We will sequentially add b1, b2, .. to the
groups, initially assuming the groups are empty. The states will be: dp[i][j] — the number of ways if
the last element of the first group is bi, and the last element of the second group is bj . The recount is
simple; we need to iterate over the previous element and check the divisibility condition. The answer will
be dp[1][1] + . . . + dp[1][k], since the minimum must be in the first group. This dynamic programming
approach naively works in O(k3), but if written a bit more carefully, it can work in O(k2). This will score
some points, but for n = 3·105, it is too slow. However, we can notice an interesting fact: if there is at least
one suitable partition, the number of distinct numbers in the entire array does not exceed 2 · log2(109),
since if in each group all numbers divide all others, each new distinct number in the group is at least half
the size of the previous one, meaning there are at most log2(109) of them. Thus, if the number of distinct
numbers > 60, we can immediately conclude that the answer is zero and not compute the dynamics, and
for k ≤ 60, even a solution with a complexity of O(k3) will be more than fast enough. This is the solution
for α = 0.

For α = 1, three new cases are added in which the sum can equal min(a1, a2, . . . , an) + 1.

• In both groups, all also divide each other, and the last element of the first group equals
min(a1, a2, . . . , an) + 1

• In both groups, all also divide each other, except for one place in one of the groups where ai mod
ai+1 = 1 exactly, and the last element of the first group equals min(a1, a2, . . . , an) + 1

• If min(a1, a2, . . . , an) = 1, then it is possible to partition into three groups, with the last element of
the first two being 1, and all dividing each other.

Page 4 of 5



Innopolis Open 2024-2025
Second qualification round

Innopolis, December 29, 2024

It is not difficult to understand that there are no other cases when the sum equals min(a1, a2, . . . , an)+1.
Each of the three cases needs to be counted separately. This is done using similar dynamic programming.
For the first case, we simply need to compute the answer differently, while the dynamic programming is
completely analogous to the case α = 0. For the second case, we need to add a flag to the DP states —
whether ai mod ai+1 = 1 has been used. For the third case, we need to add a DP state for the last index of
the third group. A naive implementation will work in O(k4), which is fast enough, since if k > 3 · log2(109)
we can still conclude that the answer is 0 without computing the dynamics.

Page 5 of 5


