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Problem Tutorial: “Paper Sheets”

0.1 Full Solution

There are only two positions for the cards, let’s consider each:

• If the cards are placed vertically, then the sheet can accommodate b xwc cards in width, and b yhc in
height. This means that the total number of cards in this arrangement can be achieved as b xwc · b

y
hc.

• If the cards are placed horizontally, then the sheet can accommodate bxhc cards in width, and b ywc in
height. This means that the total number of cards in this arrangement can be achieved as bxhc · b

y
wc.

The answer will be the greater of the two numbers, i.e., max(b xwc · b
y
hc, b

x
hc · b

y
wc).

Problem Tutorial: “Basketball Tournament”

0.2 Problem Statement

You need to learn how to distinguish between two situations.

0.3 Full Solution

• If the teams played a round-robin tournament, the total number of matches will be n·(n−1)
2 .

Consequently, the total number of wins will be n·(n−1)
2 .

• If the teams played an Olympic system, the total number of matches will be n − 1. Consequently,
the total number of wins will be n− 1.

Calculate the total number of wins. If it is equal to n·(n−1)
2 , the answer will be Round-robin; otherwise,

it will be Olympic.

Problem Tutorial: “Elevator”
This problem is related to the modeling and implementation of the operation of elevators.

It is necessary to model the operation of each elevator. Let’s consider the main points in the
implementation:

1. Suppose the elevator is filled with people who need floors with numbers a1, . . . , ac, and Timur is not
in the elevator. Then the time of transporting people is the sum of the time spent on stops at each
floor, the trip to the maximum floor, and the descent to the first floor.

a) The total number of different stops is equal to the number of unique numbers among a1, . . . , ac,
denote this as cnt_diff . Then the time spent on stops at the floors is h · cnt_diff .

b) The time spent on the trip to the maximum floor is lift_time · (max(a1, . . . , ac)− 1).

c) The time spent on the descent to the first floor is also lift_time · (max(a1, . . . , ac)− 1).

In the end, the time of transporting people is h · cnt_diff + 2 · lift_time · (max(a1, . . . , ac)− 1).

2. Suppose the elevator is filled with people who need floors with numbers a1, . . . , at, n, and Timur is
in the elevator (who needs the floor with number n).
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a) If the elevator visits floor n, then the time to travel to this floor will be equal to the sum of
the time spent on stops at the floors before n and the time to travel to n. The number of stops
before floor n is determined as the number of unique numbers among a1, . . . , at less than n,
denote this number as q. The time spent on the trip to floor n is (n− 1) · lift_time. Thus, the
time of transporting people is (q + 1) · h+ (n− 1) · lift_time (added 1 to q as Timur exits at
floor n).

b) If the elevator does not visit floor n, then we will run the algorithm from point a) for floors
n−1 and n+1 respectively. In the first case, add timur_up_time to the answer, in the second
case, add timur_down_time to the answer.

It is also necessary to consider the case when Timur walks up to floor n.

Problem Tutorial: “Triangles”
To solve the subtask where n ≤ 200, it is sufficient to iterate through all triples of numbers
1 ≤ a < b < c ≤ n, and for each triple, check that a+ b > c. Such a solution earns 10 points.

To speed up the solution, notice that for fixed 1 ≤ a < b ≤ n, all c in the range [b+ 1,min(n, a+ b− 1)]
are suitable. Therefore, it is sufficient to iterate through a, b and for each pair, add the number of suitable
c to the answer, which is max(0,min(n, a+ b− 1)− b).

For further optimization, notice that for a fixed a, there are several interesting ranges of b. The first
corresponds to the solution of the inequality a + b − 1 ≤ n ⇔ b ≤ n − a + 1. The second is
a + b − 1 > n ⇔ b > n − a + 1. Remember that a + 1 ≤ b ≤ n, so the ranges actually look like
this: b ∈ [a+ 1, n− a+ 1] and b ∈ [max(a+ 1, n− a+ 2), n]. For each b in the first range, it is necessary
to add a− 1 to the answer. And for each b in the second range, add n− b to the answer.

Now notice that for a ≤ n
2 , the first range remains b ∈ [a+1, n−a+1], and the second is [n−a+2, n]. Let’s

consider this case first. Then, for a fixed a, it is necessary to add (n−2·a+1)·(a−1)+
∑

n−a+2≤b≤n[n−b] to
the answer. Denote f(i, j) as the sum of natural numbers from i to j inclusive. Then, for each 1 ≤ a ≤ n

2 ,
it is necessary to add (2 · n− 2 · a+ 1) · (a− 1)− f(n− a+ 2, n) to the answer.

For the case when a > n
2 , the first range degenerates into an empty one, and in all other cases, it is

handled similarly.

Now we have an expression that depends only on a. It is easy to see that when expanding the brackets, the
obtained value can be expressed through f and through the sum

∑
1≤i≤k i

2 = k·(k+1)·(2·k+1)
6 . As a result,

the following formula is obtained: n·(n+2)·(2·n−5)
24 . To calculate the value modulo 109 + 7 in languages

without built-in support for long arithmetic, extensions of some compilers can be used, for example,
__int128_t in g ++.
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